Neural Networks 2013/14, Final Exam

The problems are to be solved within 3 hours. The use of supporting material (books, notes, calculators) is not allowed. In total, you can achieve a maximum of 9 points, the grade will be determined as "1.0 + your number of points". Note that you will only obtain a valid grade if your practical reports are sufficient.

1) Hopfield model (1pt)

Consider a Hopfield network consisting of N McCulloch Pitts type of neurons. The activity of neuron i at time t is denoted as $S_i(t) \in \{-1, +1\}$ and the synaptic connections are given by fixed weights $w_{ij} \in \mathbb{R}$ for i, j = 1, 2, ..., N. Write down the update equation which, in the Hopfield model, specifies the activities $S_i(t+1)$ as a function of the neural activities $S_i(t)$ at the previous time step. Explain why a negative w_{ij} can be interpreted as representing an inhibitory synapse.

- 2) Linear separability and optimal stability Consider a (homogeneously) linearly separable data set $ID = \{\boldsymbol{\xi}^{\mu}, S_{R}^{\mu}\}_{\mu=1}^{P}$ with N-dimensional input vectors $\boldsymbol{\xi}^{\mu} \in I\!\!R^{N}$ and labels $S_{R}^{\mu} = \pm 1$.
 - a) (1pt) Define precisely the stability $\kappa(w)$ of the perceptron weight vector $w \in \mathbb{R}^N$, given the data set \mathbb{D} . Give a geometrical interpretation of $\kappa(w)$ in the N-dimensional space of inputs and provide a graphical illustration for two-dimensional data (N=2). Explain in words why $\kappa(w)$ is a measure for the robustness of the perceptron outputs $\operatorname{sign}(w \cdot \xi^{\mu})$ with respect to noise in the input.
 - b) (1pt) Define and explain the *Minover* perceptron algorithm for optimal stability, given the set of examples *ID*. Be precise, for instance by writing it in a few lines of *pseudocode*. Use precise mathematical definitions and equations where necessary, not just words. Suggest at least one possible initialization and one reasonable stopping criterion.
 - c) (1pt) Here we assume that the data set $ID = \{\boldsymbol{\xi}^{\mu}, S_{R}^{\mu}\}_{\mu=1}^{P}$ contains reliable examples for the unknown linearly separable function $S_{R}(\boldsymbol{\xi}) = \text{sign}(\boldsymbol{w}^{*} \cdot \boldsymbol{\xi})$ defined by a teacher vector $\boldsymbol{w}^{*} \in I\!\!R^{N}$ with $|\boldsymbol{w}^{*}| = 1$. Explain the term version space, provide a precise mathematical definition and also a graphical illustration. Explain why the perceptron of optimal stability can be expected to yield a student perceptron with good generalization behavior.

3) Multilayered networks for classification (1 pt)

As examples for multi-layer networks, define the so-called *committee machine* and the parity machine with inputs $\boldsymbol{\xi} \in \mathbb{R}^N$, K hidden units $\sigma_k = \pm 1, k = 1, 2, \ldots K$ and corresponding weight vectors $\boldsymbol{w}^{(k)} \in \mathbb{R}^N$. For both machines, express the output $S(\boldsymbol{\xi})$ mathematically as a function of the input. Be precise and mention potential conditions that K should satisfy.

4) Gradient descent

Consider a single continuous unit with output $\sigma(\boldsymbol{\xi}) = \tanh[\gamma \boldsymbol{w} \cdot \boldsymbol{\xi}].$

Here, ξ denotes an N-dim. input vector and $\mathbf{w} \in \mathbb{R}^N$ is the adaptive weight vector. The gain factor γ is a given, positive constant which is not supposed to change in the training.

Given a single training example, i.e. input vector $\boldsymbol{\xi}^{\mu}$ and target value $\tau^{\mu} \in \mathbb{R}$, consider the quadratic error measure

$$e^{\mu}=rac{1}{2}\left[\sigma(oldsymbol{\xi}^{\mu})- au^{\mu}
ight]^{2}.$$

- a) (0.75pt) Derive the partial derivatives of e^{μ} with respect to the components w_k of the weight vector. Hint: $\tanh' = 1 \tanh^2$.
- b) (0.75pt) Write down an online gradient descent update step for the weight vector \boldsymbol{w} based on the single example e^{μ} . Discuss qualitatively (in words, no math required) the role of the learning rate in <u>stochastic</u> gradient descent; how does it influence the convergence of \boldsymbol{w} ?

5) Overfitting and Regularization

- a) (1pt) Explain the terms bias and variance in the context of polynomial regression as an example problem. You may use words and/or provide equations, but in any case: be precise.
- b) (1pt) Explain the basic idea of weight decay in the context of (batch) gradient based learning. How can it be used to control overfitting effects in feedforward networks of non-linear units? Consider the minimization of a cost function E(w) with weight vector $w \in \mathbb{R}^N$ and gradient $\nabla_w E \in \mathbb{R}^N$. Provide the generic form of the update equation with weight decay, introduce and explain control parameter(s) if necessary. Re-write the update as a gradient descent for a modified cost function.
- c) (0.5pt) Your partner in the practicals wants to use a standard feed-forward neural network with (N-K-1) architecture for regression. He/she claims that using only linear transfer functions g(x) = x in the hidden layer and the output should avoid overfitting. In order to compensate for the reduced complexity, he/she suggests to increase the number of hidden units. Why are these ideas not very convincing? Write down the output as a function of the input, formally, and start your argument from there.